3.311 \(\int \frac{x^9}{a+b x^4+c x^8} \, dx\)

Optimal. Leaf size=192 \[ -\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} c^{3/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{2 \sqrt{2} c^{3/2} \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{x^2}{2 c} \]

[Out]

x^2/(2*c) - ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/
Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*c^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) -
((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b + Sqr
t[b^2 - 4*a*c]]])/(2*Sqrt[2]*c^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]])

_______________________________________________________________________________________

Rubi [A]  time = 0.708604, antiderivative size = 192, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222 \[ -\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} c^{3/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{2 \sqrt{2} c^{3/2} \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{x^2}{2 c} \]

Antiderivative was successfully verified.

[In]  Int[x^9/(a + b*x^4 + c*x^8),x]

[Out]

x^2/(2*c) - ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/
Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*c^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) -
((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b + Sqr
t[b^2 - 4*a*c]]])/(2*Sqrt[2]*c^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 72.5695, size = 196, normalized size = 1.02 \[ \frac{x^{2}}{2 c} - \frac{\sqrt{2} \left (- 2 a c + b^{2} + b \sqrt{- 4 a c + b^{2}}\right ) \operatorname{atan}{\left (\frac{\sqrt{2} \sqrt{c} x^{2}}{\sqrt{b + \sqrt{- 4 a c + b^{2}}}} \right )}}{4 c^{\frac{3}{2}} \sqrt{b + \sqrt{- 4 a c + b^{2}}} \sqrt{- 4 a c + b^{2}}} + \frac{\sqrt{2} \left (- 2 a c + b^{2} - b \sqrt{- 4 a c + b^{2}}\right ) \operatorname{atan}{\left (\frac{\sqrt{2} \sqrt{c} x^{2}}{\sqrt{b - \sqrt{- 4 a c + b^{2}}}} \right )}}{4 c^{\frac{3}{2}} \sqrt{b - \sqrt{- 4 a c + b^{2}}} \sqrt{- 4 a c + b^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**9/(c*x**8+b*x**4+a),x)

[Out]

x**2/(2*c) - sqrt(2)*(-2*a*c + b**2 + b*sqrt(-4*a*c + b**2))*atan(sqrt(2)*sqrt(c
)*x**2/sqrt(b + sqrt(-4*a*c + b**2)))/(4*c**(3/2)*sqrt(b + sqrt(-4*a*c + b**2))*
sqrt(-4*a*c + b**2)) + sqrt(2)*(-2*a*c + b**2 - b*sqrt(-4*a*c + b**2))*atan(sqrt
(2)*sqrt(c)*x**2/sqrt(b - sqrt(-4*a*c + b**2)))/(4*c**(3/2)*sqrt(b - sqrt(-4*a*c
 + b**2))*sqrt(-4*a*c + b**2))

_______________________________________________________________________________________

Mathematica [A]  time = 0.221771, size = 210, normalized size = 1.09 \[ \frac{-\frac{\sqrt{2} \left (b \sqrt{b^2-4 a c}+2 a c-b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{2} \left (b \sqrt{b^2-4 a c}-2 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}+2 \sqrt{c} x^2}{4 c^{3/2}} \]

Antiderivative was successfully verified.

[In]  Integrate[x^9/(a + b*x^4 + c*x^8),x]

[Out]

(2*Sqrt[c]*x^2 - (Sqrt[2]*(-b^2 + 2*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*S
qrt[c]*x^2)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 -
 4*a*c]]) - (Sqrt[2]*(b^2 - 2*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]
*x^2)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c
]]))/(4*c^(3/2))

_______________________________________________________________________________________

Maple [B]  time = 0.029, size = 360, normalized size = 1.9 \[{\frac{{x}^{2}}{2\,c}}-{\frac{b\sqrt{2}}{4\,c}\arctan \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{\sqrt{2}a}{2}\arctan \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}-{\frac{\sqrt{2}{b}^{2}}{4\,c}\arctan \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{b\sqrt{2}}{4\,c}{\it Artanh} \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{\sqrt{2}a}{2}{\it Artanh} \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}-{\frac{\sqrt{2}{b}^{2}}{4\,c}{\it Artanh} \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^9/(c*x^8+b*x^4+a),x)

[Out]

1/2*x^2/c-1/4/c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x^2*2^(1/2)/((
b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b+1/2/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2
)^(1/2))*c)^(1/2)*arctan(c*x^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a-1/4/c
/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x^2*2^(1/2
)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2+1/4/c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c
)^(1/2)*arctanh(c*x^2*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b+1/2/(-4*a*c+b
^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x^2*2^(1/2)/((-b+(
-4*a*c+b^2)^(1/2))*c)^(1/2))*a-1/4/c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2
)^(1/2))*c)^(1/2)*arctanh(c*x^2*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \frac{x^{2}}{2 \, c} - \frac{\int \frac{{\left (b x^{4} + a\right )} x}{c x^{8} + b x^{4} + a}\,{d x}}{c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^9/(c*x^8 + b*x^4 + a),x, algorithm="maxima")

[Out]

1/2*x^2/c - integrate((b*x^4 + a)*x/(c*x^8 + b*x^4 + a), x)/c

_______________________________________________________________________________________

Fricas [A]  time = 0.294613, size = 1446, normalized size = 7.53 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^9/(c*x^8 + b*x^4 + a),x, algorithm="fricas")

[Out]

-1/4*(sqrt(1/2)*c*sqrt(-(b^3 - 3*a*b*c + (b^2*c^3 - 4*a*c^4)*sqrt((b^4 - 2*a*b^2
*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))*log(-(a*b^2 - a^2*c)*x^
2 + 1/2*sqrt(1/2)*(b^4 - 5*a*b^2*c + 4*a^2*c^2 - (b^3*c^3 - 4*a*b*c^4)*sqrt((b^4
 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))*sqrt(-(b^3 - 3*a*b*c + (b^2*c^3 -
4*a*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c
^4))) - sqrt(1/2)*c*sqrt(-(b^3 - 3*a*b*c + (b^2*c^3 - 4*a*c^4)*sqrt((b^4 - 2*a*b
^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))*log(-(a*b^2 - a^2*c)*
x^2 - 1/2*sqrt(1/2)*(b^4 - 5*a*b^2*c + 4*a^2*c^2 - (b^3*c^3 - 4*a*b*c^4)*sqrt((b
^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))*sqrt(-(b^3 - 3*a*b*c + (b^2*c^3
- 4*a*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a
*c^4))) + sqrt(1/2)*c*sqrt(-(b^3 - 3*a*b*c - (b^2*c^3 - 4*a*c^4)*sqrt((b^4 - 2*a
*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))*log(-(a*b^2 - a^2*c
)*x^2 + 1/2*sqrt(1/2)*(b^4 - 5*a*b^2*c + 4*a^2*c^2 + (b^3*c^3 - 4*a*b*c^4)*sqrt(
(b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))*sqrt(-(b^3 - 3*a*b*c - (b^2*c^
3 - 4*a*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4
*a*c^4))) - sqrt(1/2)*c*sqrt(-(b^3 - 3*a*b*c - (b^2*c^3 - 4*a*c^4)*sqrt((b^4 - 2
*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))*log(-(a*b^2 - a^2
*c)*x^2 - 1/2*sqrt(1/2)*(b^4 - 5*a*b^2*c + 4*a^2*c^2 + (b^3*c^3 - 4*a*b*c^4)*sqr
t((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))*sqrt(-(b^3 - 3*a*b*c - (b^2*
c^3 - 4*a*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 -
 4*a*c^4))) - 2*x^2)/c

_______________________________________________________________________________________

Sympy [A]  time = 12.3801, size = 134, normalized size = 0.7 \[ \operatorname{RootSum}{\left (t^{4} \left (4096 a^{2} c^{5} - 2048 a b^{2} c^{4} + 256 b^{4} c^{3}\right ) + t^{2} \left (192 a^{2} b c^{2} - 112 a b^{3} c + 16 b^{5}\right ) + a^{3}, \left ( t \mapsto t \log{\left (x^{2} + \frac{256 t^{3} a b c^{4} - 64 t^{3} b^{3} c^{3} - 8 t a^{2} c^{2} + 16 t a b^{2} c - 4 t b^{4}}{a^{2} c - a b^{2}} \right )} \right )\right )} + \frac{x^{2}}{2 c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**9/(c*x**8+b*x**4+a),x)

[Out]

RootSum(_t**4*(4096*a**2*c**5 - 2048*a*b**2*c**4 + 256*b**4*c**3) + _t**2*(192*a
**2*b*c**2 - 112*a*b**3*c + 16*b**5) + a**3, Lambda(_t, _t*log(x**2 + (256*_t**3
*a*b*c**4 - 64*_t**3*b**3*c**3 - 8*_t*a**2*c**2 + 16*_t*a*b**2*c - 4*_t*b**4)/(a
**2*c - a*b**2)))) + x**2/(2*c)

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.440106, size = 1, normalized size = 0.01 \[ \mathit{Done} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^9/(c*x^8 + b*x^4 + a),x, algorithm="giac")

[Out]

Done